Area W: Wave processes

Area W focuses on gravity waves in ocean and atmosphere. Gravity waves occur within a fluid or at the interface between two media of different density when the force of gravity or buoyancy tries to restore equilibrium. They exist for example at the surface of the ocean or even within the ocean or atmosphere if the fluid is stratified in density. These latter waves are called internal gravity waves. The projects in area W investigate internal wave processes the ocean and extend new ideas to the atmosphere.

Further investigate the ocean, new ideas for the atmosphere

In two projects our scientists will focus on the ocean, i.a. quantifying the generation and propagation of internal waves and extending as well as validating gravity wave closures for the ocean. A third project explores a new parameterisation concepts for gravity waves in the atmosphere.

Specific research questions in Area W are:

  • What are dominant mechanisms and processes for gravity waves in the atmosphere and how can we better parameterise them?
  • How do gravity waves propagate and dissipate in the ocean and how can we better parameterise the wave effects on the ocean circulation?
  • Pollmann, F. & Nycander, J. (2022). Global calculation of the internal M2-tide generation with a horizontal direction (mode 1) [Data set]. SEANOE, doi: https://doi.org/10.17882/92304.

  • Denamiel, C., Vasylkevych, S., Žagar, N., Zemunik, P. & Vilibić, I. (2023). Destructive potential of planetary meteotsunami waves beyond the Hunga Tonga–Hunga Ha’apai volcano eruption. B. Am. Meteorol. Soc. 104(1), E178–E191, doi: https://doi.org/10.1175/BAMS-D-22-0164.1.

  • Vadas, S. L., Becker, E., Baumgarten, G. et al. (2023). Secondary gravity waves from the stratospheric polar vortex over ALOMAR observatory on 12–14 January 2016: Observations and modeling. J. Geophys. Res. - Atmospheres 128(2), e2022JD036985, doi: https://doi.org/10.1029/2022JD036985.

  • von Storch, J.-S. & Lüschow, V. (2023). Wind power input to ocean near-inertial waves diagnosed from a 5-km global coupled atmosphere-ocean general circulation model. J. Geophys. Res. - Oceans 128(2), e2022JC019111, doi: https://doi.org/10.1029/2022JC019111.

  • Olbers, D., Pollmann, F., Patel, A. & Eden, C. (2023). A model of energy and spectral shape for the internal gravity wave field in the deep-sea – The parametric IDEMIX model. J. Phys.Oceanogr. 53(5), doi: https://doi.org/10.1175/JPO-D-22-0147.1.

  • Pollmann, F. & Nycander, J. (2023). Resolving the horizontal direction of internal tide generation: Global application for the M2-tide’s first mode. J. Phys. Oceanogr. 53(5)doi: https://doi.org/10.1175/JPO-D-22-0144.1

  • Schaefer-Rolffs, U. (2023). A Dynamic Mixed Model for General Circulation Models. Meteorol. Z. (Contrib. Atm. Sci.), doi: https://doi.org/10.1127/metz/2023/1160.

  • Chouksey, M., Eden, C., Masur, G. & Oliver, M. (2023). A comparison of methods to balance geophysical flows. J. Fluid Mech. 971, A2, doi: https://doi.org/10.1017/jfm.2023.602

  • von Storch, J-S.Brüggemann, N., Korn, P. et al. (2023). Open-ocean tides simulated by ICON-O, version icon-2.6.6. Geosci. Model Dev. 16(17), 5179-5196, doi: https://doi.org/10.5194/gmd-16-5179-2023

  • Dolaptchiev, S.D., Spichtinger, P., Baumgartner, M. & Achatz, U. (2023). Interactions between gravity waves and cirrus clouds: asymptotic modeling of wave induced ice nucleation. J. Atmos. Sci. 80(12), 2861–2879, doi: https://doi.org/10.1175/JAS-D-22-0234.1.