Area T: Turbulence and Boundary Layer

In Area T oceanographers and meteorologists work on small-scale turbulent and boundary layer processes in ocean and atmosphere. The term boundary layer describes the areas at the top or bottom in the ocean or atmosphere. The focus in Area T is on the boundary layer processes at the ocean's surface and bottom boundaries.

Combining experiments with simulations

Scientists in Area T use experiments as well as simulations to investigate the ocean and atmosphere. High-resolution measurements are used e.g. to construct horizontal and vertical wavenumber power spectra or to construct energetically consistent parameterizations of energy transfers. Furthermore, observations with high-resolution data and simulations help assessing the mixing processes active in a descending gravity plume.

Specific research questions in Area T are:

  • How to quantify and parameterise stratified turbulence in the atmosphere?
  • What are processes, energy transfers and interactions between small-scale turbulence, gravity waves and eddies in the surface and bottom boundary layers of the ocean?
  • Carpenter, J.R., Buckley, M.P., & Veron, F. (2022). Evidence of the critical layer mechanism in growing wind waves. J. Fluid Mech. 94(26), doi: https://doi.org/10.1017/jfm.2022.714.

  • Llanillo, P. J., Kanzow, T., Janout, M. A., & Rohardt, G. (2023). The deep-water plume in the northwestern Weddell Sea, Antarctica: Mean state, seasonal cycle and interannual variability influenced by climate modes. J. Geophys. Res. 128(2), e2022JC019375, doi: https://doi.org/10.1029/2022JC019375

  • Olbers, D., Pollmann, F., Patel, A. & Eden, C. (2023). A model of energy and spectral shape for the internal gravity wave field in the deep-sea – The parametric IDEMIX model. J. Phys.Oceanogr. 53(5), doi: https://doi.org/10.1175/JPO-D-22-0147.1.

  • Loft, M., Kühl, N., Buckley, M.P., Carpenter, J.R., Hinze, M., Veron, F. & Rung, T. (2023). Two-Phase Flow Simulations of Surface Waves in Wind-Forced Conditions. Phys. Fluids 35(7), 072108, doi: https://doi.org/10.1063/5.0156963

  • Holand, K., Kalisch, H., Buckley, M. et al. (2023). Identification of wave breaking from nearshore wave-by-wave records. Phys. Fluids 35(9), 092105, doi: https://doi.org/10.1063/5.0165053

  • Štulic, L., Timmermann, R., Paul, S., Zentek, R., Heinemann, G. & Kanzow, T. (2023). Southern Weddell Sea surface freshwater flux modulated by icescape and atmospheric forcing. Ocean Sci. 19, 1791–1808, doi: https://doi.org/10.5194/os-19-1791-2023.

  • Miracca-Lage, M., Becherer, J., Merckelbach, L., Bosse, A., Testor, P., & Carpenter, J. R. (2024). Rapid restratification processes control mixed layer turbulence and phytoplankton growth in a deep convection region. Geophysical Research Letters, 51, e2023GL107336, doi: https://doi.org/10.1029/2023GL107336.

  • Brüggemann, N., Losch, M., Scholz, P., Pollmann, F., Danilov, S., Gutjahr, O., Jungclaus, J., Koldunov, N., Korn, P., Olbers, D., Eden, C. (2024). Parameterized Internal Wave Mixing in Three Ocean General Circulation Models. Journal of Advances in Modeling Earth Systems, 16, e2023MS003768. doi: https://doi.org/10.1029/2023MS003768

  • Dettling, N., Losch, M., Pollmann, F. and Kanzow, T. (2024). Toward Parameterizing Eddy-Mediated Transport of Warm Deep Water across the Weddell Sea Continental Slope. J. Phys. Oceanogr., 54, 1675–1690, doi: https://doi.org/10.1175/JPO-D-23-0215.1.