Area M: Mathematics, New Concepts and Methods

Area M represents the foundation of our project. The scientists in that area work on new mathematical concepts and numerical methods to be tested in the other project areas. Thus, it forms the basis for future work.

Interdisciplinary approach

Applied mathematicians and experts from geo sciences are working together in area M, to foster an exchange with the other research areas and to transfer knowledge between the different disciplines. By working on consistent model formulation, new and consistent parameterisations and numerics for both atmosphere and ocean, the mathematicians can help climate scientists improve their models and thus enhance climate projections.

Specific research questions in Research Area M are:

  • What is a mathematically and physically consistent model formulation for the different dynamical regimes and their interaction?
  • Can we formulate better and physically consistent sub-grid scale parameterisations for the interaction between different dynamical regimes?
  • Can we develop better numerical schemes?
  • Burchard, H.Klingbeil, K., Lorenz, M. et al. (2021). Effective Diahaline Diffusivities in Estuaries. J. Adv. Model Earth Sy. 13(2), doi: https://doi.org/10.1029/2020MS002307.

  • Ma, Q. & Franzke, C.L.E. (2021). The role of transient eddies and diabatic heating in the maintenance of European heat waves: a nonlinear quasi-stationary wave perspective. Clim. Dyn. 56: 2983–3002, doi: https://doi.org/10.1007/s00382-021-05628-9

  • Gassmann, A. (2021). Inherent Dissipation of Upwind-Biased Potential Temperature Advection and its Feedback on Model Dynamics. J. Adv. Model Earth Sy., doi: https://doi. org/10.1029/2020MS002384.

  • Ma, Q., Lembo, V. & Franzke, C. L. (2021). The Lorenz energy cycle: trends and the impact of modes of climate variability. Tellus A, doi: https://doi.org/10.1080/16000870.2021.1900033.

  • Özden, G. & Oliver, M. (2021). Variational balance models for the three-dimensional Euler–Boussinesq equations with full Coriolis force. Phys. Fluids 33, 076606, doi: https://doi.org/10.1063/5.0053092

  • Prugger, A.Rademacher, J. D. M. (2021). Explicit superposed and forced plane wave generalized Beltrami flows. IMA J. Appl. Math., doi: https://doi.org/10.1093/imamat/hxab015.

  • Noethen, F. (2021). Computing Covariant Lyapunov Vectors in Hilbert spaces. J. Comput. Dyn., 2021, 8 (3): 325-352. doi: 10.3934/jcd.2021014.

  • Bauer, T. P., Holtermann, P., Heinold, B., Radtke, H., Knoth, O. & Klingbeil, K. (2021). ICONGETM v1.0 – flexible NUOPC-driven two-way coupling via ESMF exchange grids between the unstructured-grid atmosphere model ICON and the structured-grid coastal ocean model GETM. Geosci. Model Dev., 14, 4843–4863, doi: https://doi.org/10.5194/gmd-14-4843-2021.

  • Franzke, C.L.E. (2021). Towards the development of economic damage functions for weather and climate extremes. Ecological Economics 189, 107172, doi: https://doi.org/10.1016/j.ecolecon.2021.107172

  • Merckelbach, L.M. & Carpenter, J.R. (2021). Ocean Glider Flight in the Presence of Surface Waves. J. Atmos. Ocean Tech., 38(7), 1265-1275, doi: 10.1175/JTECH-D-20-0206.1.