Area M: Mathematics, New Concepts and Methods

Area M represents the foundation of our project. The scientists in that area work on new mathematical concepts and numerical methods to be tested in the other project areas. Thus, it forms the basis for future work.

Interdisciplinary approach

Applied mathematicians and experts from geo sciences are working together in area M, to foster an exchange with the other research areas and to transfer knowledge between the different disciplines. By working on consistent model formulation, new and consistent parameterisations and numerics for both atmosphere and ocean, the mathematicians can help climate scientists improve their models and thus enhance climate projections.

Specific research questions in Research Area M are:

  • What is a mathematically and physically consistent model formulation for the different dynamical regimes and their interaction?
  • Can we formulate better and physically consistent sub-grid scale parameterisations for the interaction between different dynamical regimes?
  • Can we develop better numerical schemes?
  • Umlauf, L., Klingbeil K., Radke, H., Schwefel, R., Bruggeman, J. & Holtermann, P.L. (2023). Hydrodynamic control of sediment-water fluxes: Consistent parameterization and impact in coupled benthic-pelagic models. J. Geophys. Res. - Oceans 128, e2023JC019651, doi: https://doi.org/10.1029/2023JC019651

  • Ovsyannikov, I., Rademacher, J.D.M., Welter, R. & Lu, B. (2023). Time Averages and Periodic Attractors at High Rayleigh Number for Lorenz-like Models. J. Nonlinear Sci. 33(5), doi: https://doi.org/10.1007/s00332-023-09933-x

  • Prugger, A., Rademacher, J.D.M. & Yang, J. (2023). Rotating Shallow Water Equations with Bottom Drag: Bifurcations and Growth Due to Kinetic Energy Backscatter. SIAM Journal on Applied Dynamical Systems 22(3), doi: https://doi.org/10.1137/22M152222X

  • Klingbeil, K. & Henell, E. (2023). A rigorous derivation of the Water Mass Transformation framework, the relation between mixing and dia-surface exchange flow, and links to recent theories in estuarine research. J. Phys. Oceanogr. 53, 2953-2968, doi: https://doi.org/10.1175/JPO-D-23-0130.1

  • Ovsyannikov, I. (2023). Appearance of discrete Lorenz attractors in the transitions from saddle to saddle-focus. arXiv, 2309.13959, doi: https://doi.org/10.48550/arXiv.2309.13959.

  • Reinert, M., Lorenz, M., Klingbeil, K., Büchmann, B., & Burchard, H. (2023). High-Resolution Simulations of the Plume Dynamics in an Idealized 79°N Glacier Cavity Using Adaptive Vertical Coordinates. J. Adv. Model Earth Sy. 15(10), e2023MS003721, doi: https://doi.org/10.1029/2023MS003721

  • Reese, L., Gräwe, U., Klingbeil, K., Li, X., Lorenz, M. & Burchard, H. (2023). Local mixing determines spatial structure of diahaline exchange flow in a mesotidal estuary – a study of extreme runoff conditions. J. Phys. Oceanogr. 54(1), e2019JC015527, doi: https://doi.org/10.1175/JPO-D-23-0052.1.

  • Henell, E., Burchard, H., Gräwe, U. & Klingbeil, K. (2023). Spatial composition of the diahaline overturning circulation in a fjord-type, non-tidal estuarine system. J. Geophys. Res. - Oceans 128, e2023JC019862, doi: https://doi.org/10.1029/2023JC019862

  • Kutensko, A., Danilov, S., Juricke, S. & Oliver, M. (2024). On the relation between Fourier and Walsh–Rademacher spectra for random fields. Appl. Comput. Harmon. Anal. 68, 101603, doi: https://doi.org/10.1016/j.acha.2023.101603.

  • Li, X., [...], Danilov, S.Koldunov, N., [...] & Jung, T. (2024). Eddy activity in the Arctic Ocean projected to surge in a warming world. Nat. Clim. Chang., doi: https://doi.org/10.1038/s41558-023-01908-w.