Reports

Research Stay in Douai by Mouhanned Gabsi (Oct 23)

After completing a 1-month research stay at the Centre for Materials & Processes (CERI MP)- IMT Nord Europe in Douai, I feel it is an important moment to reflect on how the stay has informed my work, including key research findings, implications and emerging questions.
My intention in working in Douai as a visiting researcher was to experience another academic reality, build a professional network and identify possibilities for future research collaborations.

From October 2nd to October 31st, I had the great opportunity to visit Prof. Modesar shakoor at the IMT Nord Europe’s Centre for Education, Research and Innovation in Materials and Processes. The IMT (Institut Mines Télécom) Nord Europe is a French graduate school of engineering. It is located in the Hauts-de-France region, shared between 2 campuses: the science campus of the University of Lille (Villeneuve-d'Ascq, European Metropolis of Lille); and the city of Douai. The school trains high-level engineers and scientists (Master and PhD level) in various technological fields including Digital Sciences, Energy and Environment Eco-Materials, Industry and Civil Engineering.

The working environment in the research center was very vivid and enabled a productive exchange of knowledge. I received a lot of useful input regarding my PhD topic and was supported in any possible way. This leads me to clarify some doubts related to my current work. I have been able to further develop and improve a big part of my PhD.

I shared the office with Sarabilou, a Phd Student who is working in the same field of interest. This provided me an opportunity to have some interesting discussions with him on various topics.

During my research stay, Prof. Modesar recommended that I learn and experience some deep learning tools and for this, he proposed some online tutorials related to specific class of artificial recurrent neural network (RNN) architecture called the Long Short-Term Memory (LSTM) neural networks implemented in Python with the TensorFlow library. I used the LSTM to solve the 1D wave equation and 2D heat equation. Our regular meeting and discussions  lead to a possibility for future research collaborations in this direction.

Although my stay abroad was shortened, the experience was still great and the journey was worthwhile. I got to know interesting personalities. The people I met in the Student Residence were extremely welcoming, supportive and easy to talk with.

Lastly, I believe the networking I have done throughout this experience will become valuable in the future and am very grateful to have made so many valuable contacts.

I would like to thank the TRR181 for enabling and financially supporting this research stay abroad.

Combining the multi-scale finite element with stochastic  subgrid informations

I defined my PhD reaserch project within the goal  to  combine Multi scale numerics with stochastic subgrid informations.

Mouhanned Gabsi, PhD M2

My name is Mouhanned Gabsi and I work as a PhD student at the  University of Hamburg under the supervision of Prof. Dr. Jörn Behrens   (University of Hamburg). I am part of the TRR subproject M2:   Systematic Multi-Scale Modelling and Analysis for Geophysical Flows.   M2 aims at systematically deriving new numerical and stochastic  methods for the energyconsistent representation of subgrid-scale  processes of geophysical flows. Beginning with a bit about myself, I got a bachelor degree in  Mathematics and Applications at the University of Monastir (Tunisia),   after that I persued a Master degree in Applied Analysis and  Mathematical Physics at the University of Toulon (France) that I  acquired with an internship of 6 months at the University of Paris  Saclay under the supervision of Danielle Hilhorst and Ludovic  Goudenège. The goal was to present numerical studies of iterative  coupling for solving flow and geomechanics  in a porous Medium. I started my work as part of TRR in April 2021. At the beginning, I  spent more time in literature and reading papers to dicover the new  environment that I am working on. Within this, I started to understand new scientific terms, phenomena and mechanisms related to Oceans, Atmosphere and Climate models and I found  RTG course that I took in  Mathematics, Oceanography, Meteorology and TRR meeting  very helpful  to me to acquire new knowledge and skills. After that, I defined my PhD reaserch project within the goal  to  combine Multi scale numerics with stochastic subgrid informations.   Multi-scale numerical methods will address the research questions by  providing a framework for coupling small-scale processes to the  large-scale. Subgrid-scale parametrization is the mathematical procedure describing  the statistical effect of sub-grid- scale processes on the mean flow  that is expressed in terms of the resolved-scale parameters. In global  atmospheric models, the range of processes which have to be  parametrized is large and the characteristics of the different  parametrized processes vary, e.g., atmospheric convection, gravity wave drag,   vertical diffusion. The resolvedand the subgrid-scale processes in the Earth's atmosphere are the  response to mechanical andthermal forcing, associated with the distribution of solar incoming radiation, topography, continents and oceans. There are several methods to improve the process of transferring  information from the subgrid-scale to the coarse grid in a  mathematically consistent way such as numerical multi-scale methods  which are based on homogenization or the multi-scale finite element  approach. This method is well established in porous media. The second  method is stochastic, and in particular stochastic parametrization  exploit the time scale difference between the slow resolved scale and  the fast-unresolved scale to model the latter with random noise terms.   This has many advantages such gain in computational timecompared to higher resolved simulations, reduction of model errors and  systematic representation of uncertainties. A first task is to combine  these two methods and to see  if this combination inherently address conservation properties, or  it pose an unnecessary overhead. 

Subgrid-scale processes of geophysical flows using machine learning

I am working on applying machine learning tasks such as image super resolution to geophysical data.

Dr. Rüdiger Brecht, Post-Doc M2 

I am a postdoc at Universität Bremen and I work on new sub-grid methods as part of the project M2. My research focuses on applying machine learning algorithms to geophysical fluid dynamics. Moreover, I organize the TRR Machine Learning Seminar, which takes place Tuesdays at 13:00 (everyone is welcome to join). Here, experts and newcomers meet to discuss project ideas or research results related to machine learning.  

When a numerical simulation or data for a numerical simulation does not resolve the full dynamical scales, we need to simulate these missing dynamics. Unlike landscape or face pictures, geophysical data follows self-similarity such that learning the unresolved dynamics from data is a reasonable task. Especially for geophysical flow simulations an enormous amount of data has been stored in the last decades. Moreover, machine learning performs well when there is enough data available. Thus, I am working on applying machine learning tasks such as image super resolution to geophysical data.   

Last year, I completed my PhD at Memorial University of Newfoundland, Canada. For my thesis, I used the shallow water equations to develop structure preserving discretization methods and a stochastic sub-grid model for efficient ensemble forecasting.  

 

Nonlinear waves, dissipation and (quasi-)geostrophic balances

I can show that for certain type of backscatter there are exact exponentially growing solutions, which shows that energy can get concentrated at some scales, rather than be transferred across scales.

Artur Prugger, PhD M2

Hi, my name is Artur. I am a PhD student at the University of Bremen and I am a member of the subproject M2 “Systematic multi-scale modelling and analysis for geophysical flow” since April 2017. My supervisor is Professor Jens Rademacher and I work in his research group “Applied Analysis”.

My research is about investigating the effects of various damping and driving realisations on the dynamics of different geophysical fluid models. Waves in linearisations of these models often characterise large scale phenomena in the ocean and atmosphere. I am interested in finding and analysing solutions of the full nonlinear equations.

Exact steady solutions for instance can bifurcate from trivial solutions by changing some parameters. In various cases we can prove analytically when these bifurcating waves occur and we can also determine some of their properties, such as their stability. With numerical tools we can corroborate these results and obtain additional insights into their structure and further properties.

Somewhat surprisingly, there are also linear waves that solve the full nonlinear problem. I was able to extend the class of known solutions of this type and for the first time took into account backscatter. For instance, I can show that for certain type of backscatter there are exact exponentially growing solutions, which shows that energy can get concentrated at some scales, rather than be transferred across scales.

For the investigations I use simple models like the single-layer and two-layer shallow water model as well as more complex ones like the Boussinesq approximation and the Navier–Stokes equations. In order to analyse the dynamics numerically I use the Matlab package “pde2path”.

With our investigations of idealised cases we hope to gain a better understanding of the different models used in the ocean and climate research. It is not only important from the mathematical perspective, but also could help to evaluate and improve numerical prediction models for weather and climate.

Developing stochastic parameterisations for different flow regimes

My work is focused on developing a stochastic parameterisation for the interaction between different flow regimes that will still preserve the total energy of the system and require not too much computational time.

Federica Gugole, PhD student in M2

Hi, I am Federica and I am a PhD student in project M2. I studied mathematics and now I am working at the Meteorologic Institute of the University of Hamburg. Mathematics and physics are very intertwined one with the other: improvements in understanding the mathematics leads to physics advances to new realizations which in turn help developing more accurate mathematical models. The invention of the computer and the improvement of this technology, allowed more and more mathematical theories to find useful applications and one field for those applications is also climate (and ocean) modeling. Even though a lot has already been accomplished in this field, there is still room for development. There are material limitations (as computer processors, memory storage, computer precision, etc…) as well as theory limitations (not all the phenomena taking place are fully understood at the moment and the techniques used to model them are not always accurate enough) that have to be overcome.

This is where my work takes place. To be more specific most climate models include only the slow and most energetic modes since including also the fast modes would require too much computational time. However, in real atmosphere and ocean there is energy, enstrophy and momentum transfer between the resolved and the unresolved scales. Most current deterministic parameterisation schemes do not re-inject energy into the resolved scales; instead they are effectively an energy drain. Similarly, current stochastic parameterisations are operated mainly ad hoc without consideration of energy and momentum consistency. Recent studies showed that neglecting the fast unresolved modes induce also error growth, uncertainty and biases in the model therefore they should be included somehow. My work is focused on developing a stochastic parameterisation for the interaction between different flow regimes that will still preserve the total energy of the system and require not too much computational time.

Stochastic processes have some nice features that make them suitable in climate and ocean modeling. However, when dealing with stochastic processes, extra care should be employed. Their main feature is to have different realizations with same initial conditions. Therefore, if you find something worked fine once, you should be sure it was not just luck!

Working on fundamental mathematical questions

It is important to understand fundamental mathematical questions for evaluating and improving numerical weather and climate prediction models.

Gözde Özden, PhD student in M2

Hi, I am Gözde. I am a PhD student in the subproject M2 Systematic multi-scale modeling and analysis for geophysical flow at the Jacobs University with Marcel Oliver. This subproject is splitted into three parts. Our part is variational model reduction. The purpose is to look at balance, multi-scale phenomena and variational approaches.

We mainly focus on foundational aspects of the problem. Then, we expect to encounter a variety of models where fundamental mathematical questions, such as well-posedness, regularity of solutions, validity of limits, and the analysis of associated numerical schemes is open and possibly nontrivial to resolve. It is important to understand them for evaluating and improving numerical weather and climate prediction models.

We started to examine the well-posedness for balance models for stratified flow. We will compare some models such as L1 balance and classical semigeostrophic model from shocks. Both models are formally derived in the same distinguished scaling limit and to the same order of expansion. The shocks in semigeostrophic theory are thought to be representative of the frontal dynamics regime, but this has not been tested in direct comparison.

I am really happy to be part of this project. The best advantage of it is to contribute with the other groups.