Area W: Wave Processes

Area W focuses on gravity waves in ocean and atmosphere. Gravity waves occur within a fluid or at the interface between two media of different density when the force of gravity or buoyancy tries to restore equilibrium. They exist for example at the surface of the ocean or even within the ocean or atmosphere if the fluid is stratified in density. These latter waves are called internal gravity waves. The projects in area W investigate internal wave processes the ocean and extend new ideas to the atmosphere.

Internal wave energetics in atmosphere and ocean

We aim to further improve our understanding of internal wave energetics in atmosphere and ocean by investigating how internal gravity waves form, change by interactions with one another or their surroundings, and lose their energy to the mean flow or small-scale turbulence. The strong collaboration of meteorologists and oceanographers, theoreticians and experimentalists, promises unprecedented synergy effects and improved parameterizations of gravity wave effects in ocean and atmosphere general circulation models. 

Overarching research questions in area W are:

  • What are the main mechanisms dominating internal wave energetics in the atmosphere and how can we better parameterize them in global models?
  • What are the main mechanisms dominating internal wave energetics in the ocean and how can we better observe and parameterize them in global models?

  • Li, Z. & von Storch, J.-S. (2020). M2 internal-tide generation in STORMTIDE2. J. Geophys. Res. - Oceans 125, e2019JC01545, doi: https://doi.org/10.1029/2019JC015453.

  • Quinn, B., Eden, C.Olbers, D. (2020). Application of the IDEMIX Concept for Internal Gravity Waves in the Atmosphere. J. Atmos. Sci. 77(10)3601–3618, doi: https://doi.org/10.1175/JAS-D-20-0107.1

  • Löb, J.Köhler, J.Mertens, C.Walter, M., Li, Z.von Storch, J.‐S., et al. (2020). Observations of the low‐mode internal tide and its interaction with mesoscale flow south of the Azores. J. Geophys. Res. - Oceans 125, e2019JC015879, doi: https://doi.org/10.1029/2019JC015879.

  • Löb, J., Köhler, J., Walter, M., Mertens, C., & Rhein, M. (2021). Time Series of Near-Inertial Gravity Wave Energy Fluxes: The Effect of a Strong Wind Event. J. Geophys. Res. - Oceans 126, e2021JC01747, doi: https://doi.org/10.1029/2021JC017472.

  • Eden, C., Olbers, D. & Eriksen, T. (2021). A closure for lee wave drag on the large-scale ocean circulation. J. Phys. Oceanogr. 51(12), doi: https://doi.org/10.1175/JPO-D-20-0230.1.

  • Schmid, F., Gagarina, E., Klein, R. & Achatz, U. (2021). Toward a Numerical Laboratory for Investigations of Gravity Wave–Mean Flow Interactions in the Atmosphere. Mon. Wea. Rev. 149, 4005–4026, doi: https://doi.org/10.1175/MWR-D-21-0126.1.

  • Chouksey, M., Eden, C. & Olbers, D. (2022). Gravity Wave Generation in Balanced Sheared Flow Revisited. J. Phys. Oceanogr. 52, 1351–1362, doi: https://doi.org/10.1175/JPO-D-21-0115.1.

  • Chouksey, A., Griesel, A., Chouksey, M. & Eden, C. (2022). Changes in global ocean circulation due to isopycnal diffusion. J. Phys. Oceanogr. 52(9), 2219-2235, doi: https://doi.org/10.1175/JPO-D-21-0205.1

  • Chouksey, M., Griesel, A., Eden, C. & Steinfeldt, R. (2022). Transit Time Distributions and Ventilation Pathways Using CFCs and Lagrangian Backtracking in the South Atlantic of an Eddying Ocean Model. J. Phys. Oceanogr. 52(7), 1531–1548, doi: https://doi.org/10.1175/JPO-D-21-0070.1

  • Pollmann, F. (2022). Global characterization of the ocean's internal gravity wave vertical wavenumber spectrum from Argo float profiles [Data set]. Zenodo, doi: https://doi.org/10.5281/zenodo.6966416