Area W: Wave Processes

Area W focuses on gravity waves in ocean and atmosphere. Gravity waves occur within a fluid or at the interface between two media of different density when the force of gravity or buoyancy tries to restore equilibrium. They exist for example at the surface of the ocean or even within the ocean or atmosphere if the fluid is stratified in density. These latter waves are called internal gravity waves. The projects in area W investigate internal wave processes the ocean and extend new ideas to the atmosphere.

Internal wave energetics in atmosphere and ocean

We aim to further improve our understanding of internal wave energetics in atmosphere and ocean by investigating how internal gravity waves form, change by interactions with one another or their surroundings, and lose their energy to the mean flow or small-scale turbulence. The strong collaboration of meteorologists and oceanographers, theoreticians and experimentalists, promises unprecedented synergy effects and improved parameterizations of gravity wave effects in ocean and atmosphere general circulation models. 

Overarching research questions in area W are:

  • What are the main mechanisms dominating internal wave energetics in the atmosphere and how can we better parameterize them in global models?
  • What are the main mechanisms dominating internal wave energetics in the ocean and how can we better observe and parameterize them in global models?

  • Pollmann, F. & Nycander, J. (2022). Global calculation of the internal M2-tide generation with a horizontal direction (mode 1) [Data set]. SEANOE, doi: https://doi.org/10.17882/92304.

  • Denamiel, C., Vasylkevych, S., Žagar, N., Zemunik, P. & Vilibić, I. (2023). Destructive potential of planetary meteotsunami waves beyond the Hunga Tonga–Hunga Ha’apai volcano eruption. B. Am. Meteorol. Soc. 104(1), E178–E191, doi: https://doi.org/10.1175/BAMS-D-22-0164.1.

  • Vadas, S. L., Becker, E., Baumgarten, G. et al. (2023). Secondary gravity waves from the stratospheric polar vortex over ALOMAR observatory on 12–14 January 2016: Observations and modeling. J. Geophys. Res. - Atmospheres 128(2), e2022JD036985, doi: https://doi.org/10.1029/2022JD036985.

  • von Storch, J.-S. & Lüschow, V. (2023). Wind power input to ocean near-inertial waves diagnosed from a 5-km global coupled atmosphere-ocean general circulation model. J. Geophys. Res. - Oceans 128(2), e2022JC019111, doi: https://doi.org/10.1029/2022JC019111.

  • Olbers, D., Pollmann, F., Patel, A. & Eden, C. (2023). A model of energy and spectral shape for the internal gravity wave field in the deep-sea – The parametric IDEMIX model. J. Phys.Oceanogr. 53(5), doi: https://doi.org/10.1175/JPO-D-22-0147.1.

  • Pollmann, F. & Nycander, J. (2023). Resolving the horizontal direction of internal tide generation: Global application for the M2-tide’s first mode. J. Phys. Oceanogr. 53(5)doi: https://doi.org/10.1175/JPO-D-22-0144.1

  • Schaefer-Rolffs, U. (2023). A Dynamic Mixed Model for General Circulation Models. Meteorol. Z. (Contrib. Atm. Sci.), doi: https://doi.org/10.1127/metz/2023/1160.

  • Chouksey, M., Eden, C., Masur, G. & Oliver, M. (2023). A comparison of methods to balance geophysical flows. J. Fluid Mech. 971, A2, doi: https://doi.org/10.1017/jfm.2023.602

  • von Storch, J-S.Brüggemann, N., Korn, P. et al. (2023). Open-ocean tides simulated by ICON-O, version icon-2.6.6. Geosci. Model Dev. 16(17), 5179-5196, doi: https://doi.org/10.5194/gmd-16-5179-2023

  • Dolaptchiev, S.D., Spichtinger, P., Baumgartner, M. & Achatz, U. (2023). Interactions between gravity waves and cirrus clouds: asymptotic modeling of wave induced ice nucleation. J. Atmos. Sci. 80(12), 2861–2879, doi: https://doi.org/10.1175/JAS-D-22-0234.1.