Area W: Wave Processes

Area W focuses on gravity waves in ocean and atmosphere. Gravity waves occur within a fluid or at the interface between two media of different density when the force of gravity or buoyancy tries to restore equilibrium. They exist for example at the surface of the ocean or even within the ocean or atmosphere if the fluid is stratified in density. These latter waves are called internal gravity waves. The projects in area W investigate internal wave processes the ocean and extend new ideas to the atmosphere.

Internal wave energetics in atmosphere and ocean

We aim to further improve our understanding of internal wave energetics in atmosphere and ocean by investigating how internal gravity waves form, change by interactions with one another or their surroundings, and lose their energy to the mean flow or small-scale turbulence. The strong collaboration of meteorologists and oceanographers, theoreticians and experimentalists, promises unprecedented synergy effects and improved parameterizations of gravity wave effects in ocean and atmosphere general circulation models. 

Overarching research questions in area W are:

  • What are the main mechanisms dominating internal wave energetics in the atmosphere and how can we better parameterize them in global models?
  • What are the main mechanisms dominating internal wave energetics in the ocean and how can we better observe and parameterize them in global models?

  • Achatz, U., Kim, Y.-H. & Voelker, G.S. (2023). Multi-Scale Dynamics of the Interaction Between Waves and Mean Flows: From Nonlinear WKB Theory to Gravity-Wave Parameterizations in Weather and Climate Models. J. Math. Phys. 64(11), 111101, doi: https://doi.org/10.1063/5.0165180

  • Lüschow, V. & von Storch, J-S. (2024). Sensitivity of internal-tide generation to stratification and its implication for deep overturning circulations. J. Phys. Ocean. 54, 319-330, doi: https://doi.org/10.1175/JPO-D-23-0058.1.

  • Mossad, M., Strelnikova, I., Wing, R. & Baumgarten, G. (2024). Assessing Atmospheric Gravity Wave Spectra in the Presence of Observational Gaps. Atmos. Meas. Tech. 17, 783–799, doi: https://doi.org/10.5194/amt-17-783-2024

  • Achatz, U., Alexander, M.J., Becker, E. et al. (2024). Atmospheric Gravity Waves: Processes and Parameterization. J. Atmos. Sci. 18, 237-262, doi: https://doi.org/10.1175/JAS-D-23-0210.1

  • Kim, Y.-H., Voelker, G. S., Bölöni, G., Zängl, G. & Achatz, U. (2024). Crucial role of obliquely propagating gravity waves in the quasi-biennial oscillation dynamics. Atmos. Chem. Phys. 24(5), 3297-3308, doi: https://doi.org/10.5194/acp-24-3297-2024

  • Sebastia Saez, P., Eden, C. & Chouksey, M. (2024). Evolution of internal gravity waves in a mesoscale eddy simulated using a novel model. J. Phys. Oceanogr. 54(4), 985-1002, doi: https://doi.org/10.1175/JPO-D-23-0095.1

  • Listowski, C., Stephan, C.C., Le Pichon, A., Hauchecorne, A., Kim, Y.-H., Achatz, U. & Bölöni, G. (2024). Stratospheric gravity waves impact on infrasound transmission losses across the International Monitoring System. Pure Appl. Geophys., doi: https://doi.org/10.1007/s00024-024-03467-3

  • Mahó, S.I., Vasylkevych, S. & Žagar, N. (2024). Excitation of mixed Rossby-gravity waves by wave-mean flow interactions on the sphere. Quarterly Journal of the Royal Meteorological Society, 1-17, doi: https://doi.org/10.1002/qj.4742

  • Bracamontes-Ramírez, J., Walter, M. & Losch, M. (2024). Near-inertial wave propagation in the deep Canadian Basin: Turning depths and the homogeneous deep layer. J. Geophys. Res. Oceans 129, e2023JC020228, doi: https://doi.org/10.1029/2023JC020228

  • Bracamontes-Ramirez, J. & Sutherland, Bruce R. (2024). Transient internal wave excitation of resonant modes in a density staircase. Phys. Rev. Fluids, 9(6), 064801,doi: https://doi.org/10.1103/PhysRevFluids.9.064801