Reports

Novel Measurements for Surface Waves

I recently developed a system to measure both ocean wave dynamics and turbulent motions in the airflow above the waves.

Marc Buckley, Postdoc M6

I’m Marc Buckley, a Postdoc in the Techniques subproject. My objective to measure and understand small-scale physics within the first few meters above and below the wavy ocean surface, and how they influence fluxes of energy between the atmosphere and the ocean. My main experimental approach is Particle Image Velocimetry (PIV), which consists in seeding a turbulent flow with particles and tracking the particles to retrieve information about the turbulent motions in the flow. I recently developed such a system to measure both ocean wave dynamics and turbulent motions in the airflow above the waves. I deployed it first from R/P FLIP in October 2017 off the coast of California, and more recently (September-October 2018) from a small platform in the Oder Lagoon (Baltic Sea lagoon).

We plan to use these novel measurements alongside laboratory wave tank measurements to test and validate a wind-wave coupling model developed at University of Hamburg by Michael Hinze and Nicolas Scharmacher. Additionally, we plan to use these high resolution measurements to better understand the complex physical processes that control air-sea energy fluxes, including airflow separation past steep surface waves, wave breaking, wave and current generation through the action of viscous and form (pressure) stresses. This will possibly lead to a novel physics-based air-sea energy and momentum flux parameterization, that may go beyond existing bulk parametrizations that are used in current atmospheric and oceanic models.

The making and breaking of waves

My job will be the numerical analysis and implementation of the Cahn-Hilliard/Navier-Stokes model.

Nicolas Scharmacher, PhD in M6

Hey, my name is Nicolas and I'm a PhD student currently working on the subproject M6: Techniques for atmosphere-ocean wave coupling, together with my supervisor Prof. Dr. Michael Hinze and also Dr. Jeff Carpenter and Dr. Marc Buckley from the HZG.

The energy transfer from the wind to the ocean surface and the energy dissipation caused by breaking waves accounts for the largest transfer of energy from the atmosphere to the ocean. However, despite the importance of the processes involved in surface wave generation and breaking, there are still fundamental gaps when it comes to modeling these processes.

We hope that the diffuse interface methods developed for the Cahn-Hilliard/Navier-Stokes model we are using will provide an improved method to deal with the current shortcomings of the simulation of the air-water interface. We believe that the method is well suited for that purpose due to its thermodynamical consistency, its mass-conserving property and its ability to handle topological changes, which might occur in breaking waves.

My job will be the numerical analysis and implementation of the model in order to be able to provide direct numerical simulations of the airwater interface in three dimensions, with focus on the formation and breaking of wind-generated surface waves. This requires, for example, the development and implementation of energystable time-integration schemes, efficient solvers and appropriate ways to incorporate the windforcing. Once finished, we will compare our simulations with measurements from laboratory experiments our colleagues at HZG have conducted.